Броненосец XXI века
Несмотря на множество проблем и ограничений, установка брони на современные корабли возможна. Как уже говорилось, имеет место весовая «недогрузка» (при полном отсутствии свободных объемов), которую вполне можно использовать для усиления пассивной защиты. Для начала нужно определиться с тем, что конкретно нужно защитить броней.
В годы ВОВ схема бронирования преследовала вполне конкретную цель — сохранить плавучесть корабля при его поражении снарядами. Поэтому бронировалась зона корпуса в районе ватерлинии (чуть выше и ниже уровня ВЛ). Кроме того, нужно не допустить детонации боезапаса, потери возможности двигаться, вести огонь и управлять им. Поэтому тщательно бронировались орудия ГК, их погреба в корпусе, ГЭУ и посты управления. Это и есть те критические зоны, которые обеспечивают боеспособность корабля, т.е. способность вести бой: прицельно стрелять, двигаться и не тонуть.
В случае с современным кораблем все намного сложнее. Применение тех же критериев оценки боеспособности приводит к раздуванию объемов, которые оцениваются как критические.
Для ведения прицельной стрельбы кораблю ВОВ было достаточно сохранить в целости само орудие и его погреба боезапаса — оно могло вести прицельный огонь, даже когда разбит командный пост, корабль обездвижен, сбиты КДП централизованного управления огнем.
Современные средства вооружения менее автономны. Они нуждаются в целеуказании (либо внешнем, либо собственном), электропитании и связи. Это требует от корабля сохранить свою радиоэлектронику и энергетику для возможности вести бой. Пушки можно зарядить и навести вручную, но ракеты требуют электричества и радиолокации для стрельбы. Значит, нужно бронировать аппаратные помещения РЛС и электростанции в корпусе, а также кабель-трассы. А такие устройства, как антенны связи и полотна РЛС, забронировать вообще не получится.
В этой ситуации, даже если будет забронирован объем погреба ЗУР, но вражеская ПКР попадет в небронированную часть корпуса, где, по несчастью, будут расположены аппаратура связи или РЛС ЦУ, либо электрогенераторы, ПВО корабля выходит из строя полностью. Такая картина вполне соответствует критериям оценки надежности технических систем по самому слабому ее элементу. Ненадёжность системы определяет худший ее компонент. У артиллерийского корабля таких компонентов всего два — орудия с боезапасом и ГЭУ. И оба этих элемента компактны и легко защищаются броней. У современного корабля таких компонентов множество: радиолокаторы, электростанции, кабель-трассы, пусковые установки ракет и т.д. И выход любого из этих компонентов из строя приводит к обрушению всей системы.
Можно попробовать оценить устойчивость тех или иных боевых систем корабля, применив метод оценки надежности. Для примера возьмем ПВО дальнего действия артиллерийских кораблей эпохи ВМВ и современных эсминцев и крейсеров. Под надежностью будем понимать способность системы продолжать работу при отказе (поражении) ее компонентов. Главной сложностью здесь будет определение надежности каждого из компонентов. Чтобы как-то разрешить эту проблему, примем два метода такого расчета. Первый — равная надежность всех компонентов (пусть будет 0,8). Второй — надежность пропорциональна их площади, приведенной к общей боковой площади проекции корабля.
Как видим, как с учетом относительной площади в боковой проекции корабля, так и при равных условиях надежность системы снижается у всех современных кораблей. Это не удивительно. Для вывода из строя дальней ПВО крейсера «Кливленд» нужно либо уничтожить все 6 АУ 127-мм, либо 2 КДП, либо энергетику (подача электричества на приводы КДП и АУ). Уничтожение одного КДП или нескольких АУ не приводит к полному отказу системы.
У современного РКР типа «Слава» для полного отказа системы нужно поразить либо объемную ПУ С-300Ф с ракетами, или РЛС подсвета-наведения, либо уничтожить ГЭУ. У эсминца «Арли Берк» надежность выше в первую очередь из-за разнесения боекомплекта по двум независимым УВПУ и аналогичное разнесение РЛС подсвета-наведения.
Это весьма грубый анализ всего одной системы вооружения корабля, со множеством допущений. Причем бронированным кораблям дается серьезная фора. Например, все компоненты приведенной системы корабля эпохи ВМВ бронированы, а у современных кораблей антенны не защищены принципиально (вероятность их поражения выше). Роль электроэнергии в боеспособности кораблей ВМВ несоизмеримо меньше, т.к. даже при отключенном электропитании возможно продолжение огня при ручной подаче снарядов и грубом наведением средствами оптики, без централизованного управления от КДП. Погреба боезапаса артиллерийских кораблей ниже ватерлинии, современные ракетные погреба расположены сразу под верхней палубой корпуса. И так далее.
По сути, само понятие «боевой корабль» приобрело совершенно иное значение, чем в годы ВМВ. Если раньше боевой корабль был платформой для множества относительно независимых (замкнутых на себя) компонентов вооружения, то современный корабль это слаженный боевой организм с единой нервной системой. Разрушение части корабля времен ВОВ носило локальный характер — где повреждения, там и отказ. Все остальное, что не попало в зону поражения, может работать и воевать дальше. Если в муравейнике гибнет пара муравьев — для муравейника это мелочи жизни.
У современного корабля попадание в корму почти неминуемо скажется и на том, что делается на носу. Это уже не муравейник, это человеческий организм, который, лишившись руки или ноги, не умрет, но и воевать будет уже не способен. Таковы объективные последствия совершенствования оружия. Может показаться, что это не развитие, а деградация. Однако бронированные предки могли всего лишь стрелять из пушек в пределах видимости. А современные корабли универсальны и в состоянии уничтожать цели в сотнях километров от себя. Такой качественный скачок сопровождается и определенными потерями, в числе которых усложнение вооружения и как следствие снижение надежности, рост уязвимости и повышенная чувствительность к сбоям.
Поэтому роль бронирования в современном корабле заведомо ниже, чем у их артиллерийских предков. Если и возрождать бронирование, то с несколько иными целями — для предотвращения немедленной гибели корабля при прямом попадании в наиболее взрывоопасные системы, такие как погреба боезапаса и ПУ. Такое бронирование лишь незначительно улучшает боеспособность корабля, но существенно может повысить его живучесть. Это шанс не взлететь на воздух мгновенно, а попытаться организовать борьбу за спасение корабля. Наконец, это просто время, которое может позволить экипажу эвакуироваться.
Сильно изменилось и само понятие «боеспособности» корабля. Современный бой настолько скоротечен и стремителен, что даже кратковременный выход корабля из строя может повлиять на исход сражения. Если в боях артиллерийской эпохи нанесение существенных увечий противнику могло занимать часы, то сегодня — секунды. Если в годы ВОВ выход корабля из боя практически был равен его отправке на дно, то сегодня выбывание корабля из активного ведения боя может быть всего лишь выключение его РЛС. Либо, если бой с внешним ЦУ — перехват самолета (вертолета) ДРЛО.
Тем не менее, попробуем оценить, какое могло бы получиться бронирование у современного боевого корабля.
Лирическое отступление о целеуказании
Оценивая надежность систем, хочется отойти на некоторое время от темы бронирования и затронуть сопутствующий вопрос о целеуказании для ракетного оружия. Как показано выше, одним из слабейших мест современного корабля являются его РЛС и прочие антенны, конструктивная защита которых совершенно невозможна. В связи с этим, а также учитывая успешное развитие активных систем самонаведения, иногда предлагается полный отказ от собственных РЛС общего обнаружения с переходом на получение предварительных данных о целях из внешних источников. Например, от корабельного вертолета ДРЛО или беспилотников.
ЗУР или ПКР с активной ГСН не нуждаются в непрерывном подсвете целей и им достаточно приблизительных данных о районе и направлении движения уничтожаемых объектов. Это вполне позволяет перейти на внешнее ЦУ.
Надежность внешнего ЦУ как компонента системы (например системы той же ПВО) оценить очень сложно. Уязвимость источников внешнего ЦУ очень высокая — вертолеты сбиваются дальнобойными ЗРК противника, им оказывается противодействие средствами РЭБ. Кроме того БПЛА, вертолеты и другие источники данных о целях зависимы от погоды, им требуется скоростная и устойчивая связь с получателем информации. Тем не менее, автор не в состоянии точно определить надежность таких систем. Условно примем такую надежность, как «не хуже», чем у других элементов системы. Как же изменится надежность такой системы с отказом от собственного ЦУ, покажем на примере ПВО ЭМ «Арли Берк».
Как видим, отказ от радиолокаторов подсвета-наведения повышает надежность системы. Однако исключение из системы собственных средств обнаружения целей тормозит рост надежности системы. Без РЛС SPY-1 надежность выросла всего на 4%, в то время как дублирование внешнего ЦУ и РЛС ЦУ повышает надежность на 25%. Это говорит о том, что полный отказ от собственных РЛС невозможен.
Кроме того, некоторые радиолокационные средства современных кораблей имеют ряд уникальных характеристик, терять которые совершенно нежелательно. В России имеются уникальные радиотехнические комплексы активного и пассивного целеуказания для ПКР, с загоризонтной дальностью обнаружения кораблей противника. Это РЛК «Титанит» и «Монолит». Дальность обнаружения надводного корабля достигает у них 200 и более километров при том, что антенны комплекса размещаются даже не на топах мачт, а на крышах рубок. Отказываться от них — просто преступление, ибо противник подобных средств не имеет. Обладая подобным РЛК корабль или береговой ракетный комплекс полностью автономен и не зависит ни от каких внешних источников информации.
Возможные схемы бронирования
Попробуем оснастить броней относительно современный ракетный крейсер «Слава». Для этого сравним его с кораблями близких габаритов.
Из таблицы видно, что РКР «Слава» вполне можно нагрузить дополнительно 1700 тонн нагрузки, что составит около 15,5% от полученного водоизмещения в 11 000 тонн. Вполне соответствует параметрам крейсеров периода ВОВ. А ТАРКР «Петр Великий» может выдержать усиление брони из 4500 тонн нагрузки, что составит 15,9% стандартного водоизмещения.
Рассмотрим возможные схемы бронирования.
Забронировав лишь самые пожаро- и взрывоопасные зоны корабля и его ГЭУ получили снижение толщины броневой защиты почти в 2 раза по сравнению с ЛКР «Кливленд», бронирование которого во времена ВОВ тоже считалось не самым мощным и удачным. И это при том, что самые взрывоопасные места артиллерийского корабля (погреба снарядов и зарядов) размещаются ниже ватерлинии и вообще мало подвержены риску повреждения. У ракетных кораблей объемы, содержащие тонны пороха, расположены сразу под палубой и высоко над ватерлинией.
Возможна другая схема с защитой исключительно самых опасных зон с приоритетом толщины. Про главный пояс и ГЭУ придётся в этом случае забыть. Концентрируем всю броню вокруг погребов С-300Ф, ПКР, 130-мм снарядов и ГКП. В этом случае толщины брони вырастают до 100 мм, но площадь прикрытых броней зон в площади боковой проекции корабля падает до смешных 12,6%. ПКР должно очень не повезти чтобы она попала именно в эти места.
В обоих вариантах бронирования остаются совершенно беззащитными артустановки Ак-630 и их погреба, электростанции с генераторами, хранилища боезапаса и топлива вертолета, рулевые машины, все аппаратные радиоэлектроники и кабельные трассы. Все это на «Кливленде» просто отсутствовало, поэтому конструкторы и не думали об их защите. Попадание в любую незабронированную зону для «Кливленда» не обещало фатальных последствий. Разрыв пары килограммов взрывчатки бронебойного (или даже фугасного) снаряда вне критических зон не мог угрожать кораблю в целом. «Кливленд» мог перенести не один десяток таких попаданий в течение длительного многочасового боя.
С современными кораблями все по-другому. ПКР, содержащая в десятки и даже сотни раз больше взрывчатки, попав в незабронированные объемы, причинят настолько тяжелые увечья, что корабль почти сразу теряет боеспособность, даже если критически важные бронированные зоны остались нетронутыми. Всего лишь одно попадание ПКР ОТН с БЧ весом 250-300 кг приводит к полному разрушению внутренностей корабля в радиусе 10-15 метров от места подрыва. Это больше ширины корпуса. И, что особенно важно, у бронированных кораблей эпохи ВОВ в этих незащищенных зонах не было систем, напрямую влияющих на способность ведения боя. У современного крейсера это аппаратные, электростанции, кабель-трассы, радиоэлектроника, средства связи. И все это не прикрыто броней! Если же мы попытаемся растянуть площадь бронирования и на их объемы, то толщина такой защиты упадет до совершенно смехотворных 20-30 мм.
Тем не менее, предложенная схема вполне жизнеспособна. Броня защищает наиболее опасные зоны корабля от осколков и пожаров, близких разрывов. Но вот защитит ли 100-мм преграда из стали от прямого попадания и пробития современной ПКР соответствующего класса (ОТН или ТН)?
Ракеты
Оценить способность поражать защищенные броней объекты у современных ПКР сложно. Данные по возможностям боевых частей засекречены. Тем не менее, способы провести подобную оценку, пусть и с низкой точностью и множеством допущений – существуют.
Проще всего воспользоваться математическим аппаратом артиллеристов. Бронебойность артиллерийских снарядов теоретически рассчитывается при помощи множества формул. Воспользуемся простейшей и самой точной (как уверяют некоторые источники) формулой Якоба де Марра. Для начала проверим ее по известным данным артиллерийских орудий, у которых бронепробиваемость получена на практике путем отстрела снарядов по реальной броне.
Из таблицы видно достаточно точное совпадение практических и теоретических результатов. Наибольшее расхождение касается противотанковой пушки БС-3 (практически 100 мм, в теории 149,72 мм). Делаем вывод, что по данной формуле можно теоретически рассчитать бронепробиваемость с достаточно высокой точностью, однако абсолютно достоверными полученные результаты считать нельзя.
Попробуем сделать соответствующие расчеты для современных ПКР. В качестве «снаряда» принимаем боевую часть, так как остальная конструкция ракеты не участвует в пробитии цели.
Также нужно иметь ввиду, что к полученным результатам надо относиться критически, в связи с тем, что бронебойные артиллерийские снаряды достаточно прочные объекты. Как видно из таблицы выше, на заряд приходится не более 7% веса снаряда – остальное толстостенная сталь. БЧ ПКР имеют существенно большую долю ВВ и, соответственно, менее прочные корпуса, которые при встрече с избыточно прочной преградой скорее расколются сами, чем пробьют ее.
Как видим, энергетические характеристики современных ПКР в теории вполне позволяют пробивать достаточно толстые броневые преграды. На практике полученные цифры можно смело уменьшить в несколько раз, т.к., как говорилось выше, БЧ ПКР — не бронебойный снаряд. Однако можно полагать, что прочность БЧ «Брамос» не настолько плоха, чтобы не проникнуть через преграду в 50 мм при теоретически возможных 194 мм.
Высокие скорости полета современных ПКР ОН и ОТН позволяют в теории без применения каких-либо сложных ухищрений повысить их способность пробивать броню простым кинетическим способом. Достигнуть этого можно снижением доли ВВ в массе БЧ и увеличением толщин стенок их корпусов, а также применением удлиненных форм БЧ с пониженной площадью сечения. Например, уменьшение диаметра БЧ ПКР «Брамос» в 1,5 раза при увеличении длины ракеты на 0,5 метра и сохранении массы увеличивает теоретическую пробиваемость, рассчитанную по методу Якоба де Марра, до 276 мм (рост в 1,4 раза).
Советские ракеты против американской брони
Задача поражения бронированных кораблей для разработчиков ПКР не новая. Еще в советское время для них создавались БЧ, способные поражать линкоры. Конечно, такие боевые части ставились только на ракеты оперативного назначения, так как уничтожение таких крупных целей именно их задача.
На самом деле с некоторых кораблей броня не исчезала и в ракетную эпоху. Речь идет об американских авианосцах. К примеру, бортовое бронирование авианосцев типа «Мидуэй» достигало 200 мм. Авианосцы типа «Форрестол» имели 76-мм бортовую броню и пакет продольных противоосколочных переборок. Схемы бронирования современных авианосцев засекречены, но очевидно броня не стала тоньше. Неудивительно, что конструкторы «больших» ПКР должны были проектировать ракеты, способные поражать бронированные цели. И тут простым кинетически способом пробития отделаться невозможно – 200 мм брони очень сложно пробить даже скоростным ПКР со скоростью полета около 2 М.
Собственно никто и не скрывает, что один из типов БЧ оперативных ПКР был «кумулятивно-фугасным». Характеристики не афишируются, но известна способность ПКР «Базальт» пробивать до 400 мм стальной брони.
Задумаемся над цифрой – почему именно 400 мм, а не 200 или 600? Даже если держать в уме те толщины броневой защиты, которые могли встретить советские ПКР при атаке авианосцев – цифра 400 мм кажется невероятной и избыточной. На самом деле ответ лежит на поверхности. Вернее не лежит, а режет форштевнем океанскую волну и имеет конкретное название – линкор «Айова». Бронирование этого замечательного корабля поразительным образом чуть-чуть тоньше магической цифры 400 мм.
Все встанет на свои места, если вспомнить, что начало работ над ПКР «Базальт» уходит в далекий 1963 год. В составе ВМС США все еще оставались добротные бронированные линкоры и крейсера времен ВМВ. На 1963 год ВМС США имели 4 линкора, 12 тяжелых и 14 легких крейсеров (4 ЛК «Айова», 12 ТК «Балтимор», 12 ЛК «Кливленд», 2 ЛК «Атланта»). Большинство числились в резерве, но на то и резерв, чтобы в случае мировой войны призвать в строй резервные корабли. И флот США не единственный оператор броненосцев. В том же 1963 году в ВМФ СССР оставалось 16 бронированных артиллерийских крейсеров! Были они и во флотах других стран.
К 1975 году (год принятия «Базальта» на вооружение) численность бронированных кораблей флота США сократилась до 4 линкоров, 4 тяжелых и 4 легких крейсеров. Причем линкоры оставались важной фигурой вплоть до списания в начале 90-х. Поэтому не стоит ставить под сомнение способность БЧ «Базальта», «Гранита» и других советских «больших» ПКР без труда проникнуть через броню в 400 мм, и оказать серьезное заброневое действие.
Советский союз не мог игнорировать существование «Айовы», ведь если считать, что ПКР ОН не в состоянии уничтожить этот линкор – то, получается, что данный корабль просто непобедим. Почему же тогда американцы не поставили строительство уникальных линкоров на поток? Такая притянутая за уши логика вынуждает перевернуть мир вверх ногами – конструкторы советских ПКР выглядят врунами, советские адмиралы беспечными чудаками, а стратеги страны, победившей в холодной войне – глупцами.
Кумулятивные способы пробития брони
Конструкция БЧ «Базальта» нам неизвестна. Все картинки, публикуемые по данному вопросу в интернете, предназначены для развлечения общественности, а не для раскрытия характеристик секретных изделий. За боевую часть можно выдать ее фугасный вариант, предназначенный для стрельбы по береговым объектам.
Однако об истинном содержании «кумулятивно-фугасной» БЧ можно выстроить ряд предположений. Наиболее вероятно, что такая БЧ представляет собой обычный кумулятивный заряд больших размеров и веса. Принцип ее работы аналогичен тому, как поражает цели выстрел ПТУР или гранатомета. И в этой связи возникает вопрос, как кумулятивный боеприпас, способный оставить на броне дырку весьма скромных размеров, в состоянии уничтожить боевой корабль?
Чтобы ответить на этот вопрос нужно понять, как работают кумулятивные боеприпасы. Кумулятивный выстрел, вопреки заблуждениям, не прожигает броню. Пробитие обеспечивает пест (или как еще говорят – «ударное ядро»), формирующийся из медной облицовки кумулятивной воронки. Пест имеет довольно низкую температуру, поэтому он ничего не прожигает. Разрушение стали происходит за счет «вымывания» металла под действием ударного ядра, имеющего квазижидкое (т.е. имеет свойства жидкости, при этом жидкостью не являясь) состояние. Наиболее близкий бытовой пример, позволяющий понять, как это работает – размывание льда направленной струей воды. Диаметр отверстия, получаемый при пробитии, составляет примерно 1/5 диаметра боеприпаса, глубина пробития до 5-10 диаметров. Поэтому гранатометный выстрел оставляет в броне танка отверстие диаметром всего 20-40 мм.
Помимо кумулятивного эффекта боеприпасы такого типа обладают мощным фугасным действием. Однако фугасная составляющая взрыва при поражении танков остается снаружи броневой преграды. Вызвано это тем, что энергия взрыва не в состоянии проникнуть в забронированное пространство через отверстие диаметром 20-40 мм. Поэтому внутри танка разрушениям подвергается только те детали, которые непосредственно окажутся на пути ударного ядра.
Казалось бы, принцип действия кумулятивного боеприпаса полностью исключает возможность его использования против кораблей. Даже если ударное ядро пробьет корабль насквозь – пострадает лишь то, что окажется на его пути. Это все равно, что пытаться убить мамонта одним ударом вязальной спицы. Фугасное же действие в поражении внутренностей вообще не может участвовать. Очевидно, этого недостаточно, чтобы разворотить внутренности корабля и нанести ему неприемлемый ущерб.
Однако существует ряд условий, при которых описанная выше картина действия кумулятивного боеприпаса нарушается не в лучшую для кораблей пользу. Вернемся к бронетехнике. Возьмем ПТУР и выпустим его в БМП. Какую картину разрушений мы увидим? Нет, аккуратной дырки диаметром 30 мм мы не обнаружим. Мы увидим кусок брони большой площади, вырванный с мясом. А за броней выгоревшие искореженные внутренности, как будто машину подорвали изнутри.
Все дело в том, что выстрелы ПТУР рассчитаны на поражение танковой брони толщиной 500-800 мм. Именно в них мы видим знаменитые аккуратные дырки. Но при воздействии по нерасчетно тонкой броне (как у БМП – 16-18 мм) кумулятивное действие усиливается действием фугасным. Возникает синергетический эффект. Броня просто выламывается, не выдерживая такого удара. И через дыру в броне, которая в данном случае уже не 30-40 мм, а весь квадратный метр, свободно проникает фугасный фронт высокого давления вместе с осколками брони и продукты горения взрывчатки. Для брони любой толщины можно подобрать кумулятивный выстрел такой мощности, что его действие будет не просто кумулятивным, а именно кумулятивно-фугасным. Главное – чтобы искомый боеприпас имел достаточную избыточную мощность над конкретной броневой преградой.
Выстрел ПТУР рассчитан на поражение брони в 800 мм и весит всего 5-6 кг. Что же сделает с броней, толщиной всего в 400 мм (в 2 раза тоньше) гигантский ПТУР, весом около тонны (в 167 раз тяжелее)? Даже без математических расчетов становится понятно, что последствия будут намного печальнее, чем после попадания ПТУР в танк.
Для тонкой брони БМП нужный эффект достигается выстрелом ПТУР весом всего в 5-6 кг. А для корабельной брони, толщиной в 400 мм, потребуется кумулятивно-фугасная БЧ весом в 700-1000 кг. Ровно такого веса БЧ стоят на Базальтах и Гранитах. И это вполне логично, ведь БЧ Базальта диаметром 750 мм как и все кумулятивные боеприпасы может пробить броню, толщиной более 5 своих диаметров – т.е. минимум 3,75 метров монолитной стали. Однако конструкторы упоминают лишь о 0,4 метра (400 мм). Очевидно, это предельная толщина брони, при которой боевая часть Базальта обладает необходимой избыточной мощностью, способной образовать пролом большой площади. Преграда уже в 500 мм не будет проломлена, она слишком прочная и выдержит давление. В ней мы увидим лишь знаменитую аккуратную дырку, а забронированный объем – почти не пострадает.
БЧ Базальта не пробивает ровного отверстия в броне с толщинами менее 400 мм. Она выламывает ее на значительной площади. В образовавшуюся пробоину влетают продукты горения взрывчатки, фугасная волна, осколки выбитой брони и обломки ракеты с остатками топлива. Ударное ядро кумулятивной струи мощного заряда обеспечивает расчистку дороги через множество переборок вглубь корпуса. Потопление линкора Айовы – это крайний, самый тяжелый случай из всех возможных, для ПКР Базальт. Остальные ее цели имеют в разы меньшее бронирование. На авианосцах – в диапазоне 76-200 мм, что, для данной ПКР можно считать просто фольгой.
Как было показано выше, на крейсерах с водоизмещением и размерами «Петра Великого» возможно появление бронирования 80-150 мм. Даже если эта оценка неверная, и толщины будут больше, никакой неразрешимой технической проблемы для конструкторов ПКР не появится. Корабли таких размеров и сегодня не являются типовой целью для ПКР ТН, а с возможным возрождением брони они просто окончательно войдут в список типовых целей ПКР ОН с кумулятивно-фугасными БЧ.
Альтернативные варианты
Вместе с тем, возможны и другие варианты преодоления брони, например, с применением тандемной конструкции боевой части. Первый заряд – кумулятивный, второй – фугасный.
Размеры и форма кумулятивного заряда могут быть совершенно разными. Существующие еще с 60-х годов саперные заряды красноречиво и наглядно это демонстрируют. Например, заряд КЗУ при весе 18 кг пробивает 120 мм брони, оставляя дыру шириной 40 мм и длиной 440 мм. Заряд ЛКЗ-80 при весе 2,5 кг пробивает 80 мм стали, оставляя щель, шириной 5 мм и длиной 18 мм.
Кумулятивный заряд тандемной БЧ может иметь кольцевую (тороидальную) форму. В центр «бублика», после подрыва кумулятивного заряда и пробития, беспрепятственно проникнет основной фугасный заряд. При этом практически не теряется кинетическая энергия основного заряда. Он еще будет в состоянии сокрушить несколько переборок и взорваться с замедлением глубоко внутри корпуса корабля.
Описанный выше способ пробития универсален и может использоваться на любых ПКР. Простейшие расчеты показывают, что кольцевой заряд тандемной БЧ применительно к ПКР «Брамос» съест всего лишь 40-50 кг веса его 250-киллограмовой фугасной БЧ.
Как видно из таблицы, даже ПКР «Уран» можно придать некоторые бронебойные качества. Возможности по пробитию брони остальных ПКР без проблем перекрывают все возможные толщины бронирования, которое может появиться на кораблях с водоизмещением 15-20 тыс. тонн.
Бронированный линкор
Собственно, на этом можно было бы закончить разговор о бронировании кораблей. Все что нужно, уже сказано. Тем не менее, можно попробовать представить, как мог бы вписаться корабль с противоснарядным мощным бронированием в военно-морскую систему.
Выше была показана и доказана бесполезность бронирования на кораблях существующих классов. Все, для чего может быть использована броня – это локальное бронирование наиболее взрывоопасных зон с целью исключить их детонацию при близком подрыве ПКР. От прямого попадания ПКР такое бронирование не спасает.
Однако все перечисленное касается кораблей с водоизмещение 15-25 тыс. тонн. То есть современных эсминцев и крейсеров. Их запасы по нагрузкам не позволяют оснастить их броней с толщинами более 100-120 мм. Но, чем больше корабль, тем больше статьи нагрузки, которые могут быть выделены под бронирование. Почему до сих пор никто не задумался о создании ракетного линкора с водоизмещением 30-40 тыс. тонн и бронированием более 400 мм?
Главное препятствие для создания такого корабля в отсутствии практической необходимости в таком монстре. Из существующих морских держав лишь единицы располагают экономической, технологической и промышленной мощью для разработки и постройки такого корабля. В теории это могут быть Россия и КНР, а в реальности – только США. Остается только один вопрос – зачем такой корабль нужен ВМС США?
Роль такого корабля в современном флоте совершенно непонятна. ВМС США постоянно воюют с заведомо слабыми противниками, против которых такой монстр совершенно не нужен. А в случае начала войны с Россией или КНР флот США не пойдет к враждебным берегам на мины и под торпеды подводных лодок. Вдали от берегов будет решаться задача защиты своих коммуникаций, где требуется не несколько супер-линкоров, а множество кораблей попроще, и одновременно в разных местах. Эту задачу и решают многочисленные американские эсминцы, количество которых переходит в качество. Да, каждый из них может быть не слишком выдающийся и сильный боевой корабль. Это не защищенные броней, но отлаженные в серийной постройке рабочие лошадки флота.
Они похожи на танк Т-34 – тоже не самый бронированный и не самый вооруженный танк ВМВ, но зато выпускавшийся в таких количествах, что противникам, с их дорогими и супер-мощными Тиграми пришлось не сладко. Будучи штучным товаром, Тигр не мог присутствовать на всей линии огромного фронта в отличие от вездесущих тридцатьчетверок. И гордость за выдающиеся успехи немецкой танкостроительной промышленности никак не помогала в реальности немецким пехотинцам, на которых шли десятки наших танков, а Тигры были где-то в другом месте.
Неудивительно, что все проекты создания супер-крейсера или ракетного линкора не уходили дальше футуристических картинок. В них просто нет необходимости. Развитые страны мира не продают странам третьего мира такое оружие, которое могло бы серьезно поколебать их твердые позиции лидеров планеты. Да и нет у стран третьего мира таких денег, чтобы купить столь сложные и дорогие вооружения. А вот разборки между собой развитые страны с некоторых пор предпочитают не устраивать. Очень высок риск перерастания такого конфликта в ядреный, что уже совершенно излишне и никому не нужно. Бить по равносильным партнерам предпочитают чужими руками, например, турецкими или украинскими по России, тайваньскими по КНР.
Выводы
Против полноценного возрождения корабельной брони работают все мыслимые факторы. В ней нет острой экономической или военной потребности. С конструктивной точки зрения, на современном корабле невозможно создать серьезное бронирование нужной площади. Невозможно защитить все жизненно важные системы корабля.
И, наконец, в случае, если такое бронирование все же появится – проблема легко решается доработкой БЧ ПКР. Развитые страны вполне логично не желают ценой ухудшения других боевых качеств вкладывать силы и средства в создание бронирования, которое принципиально не повысит боеспособность кораблей.
Вместе с тем, широкое внедрение локального бронирования и переход к стальным надстройкам исключительно важен. Такое бронирование позволяет кораблю легче переносить попадания ПКР и снизить объем разрушений. Однако такое бронирование никак не спасает от прямого попадания ПКР, поэтому такую задачу перед броневой защитой ставить просто бессмысленно.
Корабельная броня в XXI веке. Все аспекты проблемы. Часть 1
Корабельная броня в XXI веке. Все аспекты проблемы. Часть 2
/Алексей Поляков, topwar.ru/
Спасибо, очень интересная серия статей.
Статья хорошая, но к сожалению однобокая. Конечно нельзя всего охватить. Но все же.
А как будет проводиться высадка и защита десанта? Защита караванов судов. Равные противники, начнут войну с вывода из строя спутников. Т.о. система наведения будет обеспечиваться самолетами, ракетами, в худшем варианте вертолетами, а то и радарами кораблей. Огромную роль будут играть системы ПВО. И война очень скоро станет напоминать ВОВ. Могут использовать псевдокорабли, большие баржи с отличной плавучестью. Корабль отработает по барже ракетами и станет безоружным, а там бери его голыми руками. Если не изменяет память, был случай, когда эсминец израсходовал весь боезапас по танкеру, но утопить его не смог — танкер раскололся сам и затонул у входа в бухту. В общем вопросов тьма, но не бронированный корабль — это все же труп.